C
83.4 / 100
Domain, IP Address & Port Number
www.afta.gov.ir
(2.187.252.20:443)
Assessment Time & Date
May 30, 2022, 12:48 p.m.
Assessment Duration
Seconds 44
.Based on "cert_chain_of_trust" test, which shows an obsolete and insecure result, your grade has dropped to B
.Based on "TLS1" test, which shows an obsolete and insecure result, your grade has dropped to B
.Based on "TLS1_1" test, which shows an obsolete and insecure result, your grade has dropped to B
.Based on "ROBOT" test, which shows an obsolete and insecure result, your grade has dropped to C

SSL Certificate

Is the certificate still valid? YES
Certificate Issue Date 2020-06-13 09:43
Certificate Expiration Date 2022-06-13 09:43
Trust Chain Health Incomplete Chain!
Certificate Issuer Certum Domain Validation CA SHA2 (Unizeto Technologies S.A. from PL)
Is the certificate valid for www.afta.gov.ir? YES
This test checks if the server supports SSL‌v3 or not. SSLv3 is a broken, hence, unsafe protocol and must not be used.

HTTP Header Response

HTTP Status Code 302 Found ('/')
Strict Transport Security (HSTS) not offered
Public Key Pinning (HPKP) No support for HTTP Public Key Pinning
Server Banner Microsoft-IIS/10.0
Banner Application X-Powered-By: ASP.NET

Protocol Information

SSLv2 Your server does not support SSLv2 which is good since it is an insecure protocol.
This test checks if the server supports SSL‌v2 or not. SSLv2 is a broken, hence, unsafe protocol and must not be used.
SSLv3 Your server does not support SSLv3 which is good since it is an insecure protocol.
This test checks if the server supports SSL‌v3 or not. SSLv3 is a broken, hence, unsafe protocol and must not be used.
TLS1 Your server supports TLSv1.0. This protocol is now considered as a weak protocol. You are advised to disable support for this protocol.
This test checks if the server supports SSL‌v3 or not. TLS1.0 is an almost two-decade old protocol. This protocol is vulnerable against attacks such as BEAST and POODLE. Additionally, TLSv.10 supports weak cipher suits which further makes it an insecure protocol. Starting June 30, 2018, websites will need to stop supporting TLS 1.0 to remain PCI compliant.
TLS1.1 Your server supports TLSv1.1. This protocol is now considered a weak protocol. You are advised to start supporting more advanced protocols.
TLS1.1 does not have known major vulnerabilities. But, similar to TLS1.1 it supports weak cipher suits that are not proper for modern use.
TLS1.2 Your server supports TLSv1.2. Currently, this protocol is considered stable. But you'd better consider supporting TLS v1.3.
Currently, TLS1.2 is a stable and secure protocol to go with before TLS1.3 is officially announced as the only accepted protocol.
TLS1.3 Your server supports TLS v1.3. Currently, this protocol is considered the most robust protocol available.
TLS1.3 is going to be the stable secure protocol in the near future and it is recommended that every server shift to this protocol.

Cipher Suites

NULL Your server does not support NULL ciphers.
Description: The cipher suites with a "NULL" do not offer data encryption, only integrity check. This means "not secure" for most usages. Validation Conditions: This test is passed if the certification is not expired.
aNULL Your server does not support aNULL ciphers.
Description: For a certificate to be trusted and valid it should not be expired. Validation Conditions: This test is passed if the certification is not expired.
EXPORT Your server does not support EXPORT ciphers.
Description: The cipher suites with "EXPORT" are, by design, weak. They are encrypted, but only with keys small enough to be cracked with even amateur hardware (say, a basic home PC -- symmetric encryption relying on 40-bit keys). These suites were defined to comply with the US export rules on cryptographic systems, rules which were quite strict before 2000. Nowadays, these restrictions have been lifted and there is little point in supporting the "EXPORT" cipher suites. Validation Conditions: This test is passed if the server does not support EXPORT ciphers.

PFS Information

PFS‌ Overview Your server supports Perfect Forward Secrecy (PFS)
Description: Perfect Forward Secrecy guarantees different encryption keys per session. Thus, if a session key is compromised, other previously recorded sessions (by attacker) will be safe. Validation Conditions: This test is passed if your server supports robust perfect forward secrecy.
Ciphers that support PFS. List of ciphers that support perfect forward secrecy (PFS).
Description: This test derives the ciphers that your server uses and depicts the ones that support perfect forward secrecy. TLS_AES_256_GCM_SHA384 TLS_CHACHA20_POLY1305_SHA256 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES256-SHA384 ECDHE-RSA-AES256-SHA DHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-CHACHA20-POLY1305 DHE-RSA-CHACHA20-POLY1305 DHE-RSA-AES256-CCM8 DHE-RSA-AES256-CCM DHE-RSA-AES256-SHA256 DHE-RSA-AES256-SHA ECDHE-RSA-CAMELLIA256-SHA384 DHE-RSA-CAMELLIA256-SHA256 DHE-RSA-CAMELLIA256-SHA DHE-RSA-ARIA256-GCM-SHA384 ECDHE-ARIA256-GCM-SHA384 TLS_AES_128_GCM_SHA256 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES128-SHA DHE-RSA-AES128-GCM-SHA256 DHE-RSA-AES128-CCM8 DHE-RSA-AES128-CCM DHE-RSA-AES128-SHA256 DHE-RSA-AES128-SHA ECDHE-RSA-CAMELLIA128-SHA256 DHE-RSA-CAMELLIA128-SHA256 DHE-RSA-CAMELLIA128-SHA DHE-RSA-ARIA128-GCM-SHA256 ECDHE-ARIA128-GCM-SHA256
Analysis of ECDH‌ Curves Your server uses strong ECDHE keys for key exchange.
Description: Elliptic-curve Diffie–Hellman (ECDH) is a key agreement protocol that allows two parties, each having an elliptic-curve public–private key pair, to establish a shared secret over an insecure channel. This shared secret may be directly used as a key, or to derive another key. The key, or the derived key, can then be used to encrypt subsequent communications using a symmetric-key cipher. It is a variant of the Diffie–Hellman protocol using elliptic-curve cryptography. Validation Conditions: This test will pass if ECDH is correctly implemented.
Analysis of the strength of Diffie-Hellman Keys Your server uses strong Diffie-Hellman keys for key exchange.
Description: Diffie–Hellman key exchange is a method of securely exchanging cryptographic keys over a public channel and was one of the first public-key protocols. Diffie–Hellman is used to secure a variety of Internet services. However, research published in October 2015 suggests that the parameters in use for many DH Internet applications at that time are not strong enough to prevent compromise by very well-funded attackers, such as large governments. Validation Conditions: This test will pass if the keys are of standard strength.

Vulnerabilities

Analyzing Heartbleed Vulnerability Your connection is immune against heartbleed attack.
Description: 'Heartbleed' was a critical vulnerability in SSL which would enable an adversary to retrieve sensitive information from the corresponding server. Validation Conditions: This test passes if the server is not vulnerable to this attack.
Analyzing CCS Vulnerability Your connection is immune against CCS attack.
Description: OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of 'ChangeCipherSpec' messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the 'CCS Injection' vulnerability.
Analyzing Ticketbleed Vulnerability Your connection is immune against ticketbleed attack.
Description: 'The Ticketbleed-Bug' was a programming error in enterprise-level hardware. This bug allows a remote attacker to extract up to 31 bytes of uninitialized memory at a time. This memory can potentially contain key material or sensitive data from other connections. Validation Conditions: This test passes if the server is not vulnerable to 'ticketbleed-bug'.
Analyzing ROBOT vulnerability Your connection is potentially vulnerable to ROBOT attack.
Description: ROBOT is the return of a 19-year-old vulnerability that allows performing RSA decryption and signing operations with the private key of a TLS server. In 1998, Daniel Bleichenbacher discovered that the error messages given by SSL servers for errors in the PKCS #1 v1.5 padding allowed an adaptive-chosen ciphertext attack; this attack fully breaks the confidentiality of TLS when used with RSA encryption. Validation Conditions: This test passes if the sever is not vulnerable to the ROBOT‌ attack.
Analyzing Secure Renegotiation OpenSSL handshake do not succeed
Description: The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue. Validation Conditions: This test passes if the server is not vulnerable to this bug. not vulnerable
Analyzing Client-initiated Secure Connection Your server is properly configured to support Secure Client Renegotiation.
Description: The TLS protocol, and the SSL protocol 3.0 and possibly earlier, while implemented on many different products, cannot perform a renegotiation handshake correctly. This allows attackers to use a man-in-the-middle attack to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue. Validation Conditions: This test passes if the server does not have this vulnerability.

Cipher Suite Assessments

TLSv1
TLSv1.1
TLSv1.2
TLSv1.3

Browser Simulations

Client Cipher Suite Protocol
ANDROID-442 TLSv1.2 ECDHE-RSA-AES256-GCM-SHA384
ANDROID-500 TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256
ANDROID-60 TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256
ANDROID-70 TLSv1.2 ECDHE-RSA-AES256-GCM-SHA384
ANDROID-81 TLSv1.2 ECDHE-RSA-AES256-GCM-SHA384
ANDROID-90 TLSv1.3 TLS_AES_256_GCM_SHA384
ANDROID-X TLSv1.3 TLS_AES_256_GCM_SHA384
CHROME-74-WIN10 TLSv1.3 TLS_AES_256_GCM_SHA384
CHROME-79-WIN10 N/A No Connection
FIREFOX-66-WIN81 N/A No Connection
SCANPROBLEM N/A TCP